2,964 research outputs found

    Synthesis of Rotated Sparse Linear Dipole Array with Shaped Power Pattern

    Full text link
    © 2018 ACES. A new shaped pattern synthesis method is presented in which element rotations, positions and phases are co-optimized to produce a shaped beam pattern for a sparse dipole array. Compared with conventional shaped pattern synthesis using excitation amplitude and phase optimization, the proposed method can not only reduce the number of elements But also avoid the usage of unequal power dividers. A synthesis example is provided to verify the performance of the proposed method

    Spherical-wave based triangular finite element models for axial symmetric Helmholtz problems

    Get PDF
    In this paper, six-node hybrid triangular finite element models are devised for axial symmetric Helmholtz problems. In the formulation, boundary and domain approximations to the Helmholtz field are defined for each element. While the boundary approximation is constructed by nodal interpolation, the domain approximation satisfies the Helmholtz equation and is composed of spherical waves with source points located along the axis of symmetry. To formulate rank sufficient six-node elements, a minimal of six wave modes from three source points are required. Two methods of selecting the source points are attempted. In the first method, the directions of the waves passing through the element are essentially parallel to the three lines connecting the parametric center of the element and its three corner (or side) nodes. In the second method, the directions are essentially equally spaced at 2π/3 interval in the rz-plane. For the attempted examples, the average error ratios of the proposed elements and the conventional element are around 50%. © 2010 Elsevier B.V. All rights reserved.postprin

    Hybrid quadrilateral finite element models for axial symmetric Helmholtz problem

    Get PDF
    This paper is a continuation of the previous work in which six-node triangular finite element models for the axial symmetric Helmholtz problem are devised by using a hybrid functional and the spherical-wave modes [1]. The six-node models can readily be incorporated into the standard finite element program framework and are typically ∼50% less erroneous than their conventional or, equivalently, continuous Galerkin counterpart. In this paper, four-node and eight-node quadrilateral models are devised. Two ways of selecting the spherical-wave modes are attempted. In the first way, a spherical-wave pole is selected such that it is equal-distant from an opposing pair of element nodes. In the second way, the directions of the spherical-waves passing through the element origin are equal-spaced with one of the directions bisecting the two parametric axes of the element. Examples show that both ways lead to elements that yield very similar predictions. Furthermore, four-node and eight-node hybrid elements are typically ∼50% and ∼70% less erroneous than their conventional counterparts, respectively. © 2011 Elsevier B.V. All rights reserved.postprin

    Multi-field three-node triangular finite element model for helmholtz problem

    Get PDF
    In this paper, four three-node triangular finite element models which can readily be incorporated into the standard finite element program framework are devised via a multi-field variational functional for the bounded plane Helmholtz problem. In the models, boundary and domain fields are independently assumed. The former is constructed by nodal interpolation and the latter comprises nonsingular solutions of the Helmholtz equation. The equality of the two fields are enforced along the element boundary. Among the four devised models, the most accurate one is 1/3 to 1/2 less erroneous than the conventional single-field model in most examples. © 2011 IMACS.postprin

    High-selectivity single-ended and balanced bandpass filters using ring resonators and coupled lines loaded with multiple stubs

    Full text link
    © 2018 Elsevier GmbH High-selectivity single-ended and balanced bandpass filters (BPFs) using dual-mode ring resonators and coupled lines loaded with multiple stubs are proposed in this paper. With the help of the loaded short-circuited and open-circuited stubs, six deep transmission zeros (TZs) from 0 to 2f0 (f0: center frequency of the passband) can be realized in both of single-ended and balanced BPFs to improve the stopband suppressions. The functions of the loaded short/open stubs and calculated analysis of TZs’ positions have been presented. For further demonstration, two examples of single-ended BPF and balanced BPF with high common-mode suppression are designed and fabricated, whose center frequencies are both at 2.1 GHz. Their measured 3-dB fractional bandwidths are 23.7% and 24.7% (differential-mode), respectively. The simulated results and measurements of these two filters are in good agreement

    Printed Quasi-Yagi Antennas Using Double Dipoles and Stub-Loaded Technique for Multi-Band and Broadband Applications

    Full text link
    © 2013 IEEE. Double dipoles on a single-layer substrate are utilized to construct a triple-mode printed quasi-Yagi antenna for the multi-band and broadband antenna applications. A stub-loaded dipole generating two resonant modes (i.e., lower dual-mode dipole) is allocated on the underside of a simple dipole (i.e., upper single-mode dipole) introducing the third resonant mode. Using these three resonant modes, three compact printed quasi-Yagi antennas, i.e., tri-band, dual-band, and broadband printed quasi-Yagi antennas, are designed with the same antenna prototype but different parameter values. Seen from the measured results, all of these three antennas have good unidirectional radiations, high radiation efficiencies, and low cross-polarization levels at the operating frequencies within the impedance bandwidths

    Frequency Control of DFIG-Based Wind Power Penetrated Power Systems Using Switching Angle Controller and AGC

    Get PDF

    Design of Triplexer Using E-Stub-Loaded Composite Right-/Left-Handed Resonators and Quasi-Lumped Impedance Matching Network

    Full text link
    © 2013 IEEE. A compact triplexer based on E-stub-loaded composite right-/left-handed (ESL-CRLH) resonators with quasi-lumped impedance matching network is presented in this paper. The equivalent circuit model of the ESL-CRLH resonator is presented first and its left-/right-handed capacitance/inductance elements are fully derived. Then, a quasi-lumped impedance matching circuit is designed to connect the three ESL-CRLH resonator based filter channels for the triplexer construction. Finally, the designed triplexer obtains high isolations among the ports and low in-band insertion losses of the three filter channels centered at 1.86, 2.41, and 3.25 GHz, of which a miniaturized layout has been realized. Good agreement between the simulated and measured results can be observed to validate the design idea

    Microstrip Patch Antennas with Multiple Parasitic Patches and Shorting Vias for Bandwidth Enhancement

    Full text link
    © 2013 IEEE. Two novel microstrip patch antennas with multiple parasitic patches and shorting vias have been presented for the bandwidth enhancement. Based on the conventional triangular patch antenna, two more resonances can be obtained with the introduction of multiple parasitic patches, and consequently, the antenna bandwidth can be broadened. Parametric analysis of the patches has been studied for the verification of bandwidth enhancement. An example of the proposed antenna with multiple parasitic patches is designed, fabricated, and tested. The measured bandwidth with vert S11}vert < -10 dB ranges from 5.46 to 6.27 GHz (13.8%), and good far-field radiation patterns can be obtained within the frequency band. In addition, two shorting vias are inserted into the above proposed antenna to decrease the input impedance, resulting in further bandwidth enhancement of the antenna. This antenna is fabricated and tested as well, which achieves a measured 10-dB impedance bandwidth of 17.4% from 5.5 to 6.55 GHz
    • …
    corecore